SUMMARY
A fiber optic connector and an associated fabrication method where the connector has a connector housing having a base side, a and pair of sidewalls upstanding from the base side that are spaced apart in relation to each other, and each of the housing sidewalls define at least one aperture through which optical signals can be transmitted into and out of the housing by an input optical fiber and an output optical fiber, respectively, located in fixed positions outside the housing, a pair of optical lens elements are contained within the housing which collimate optical signals transmitted via the respective optical fibers, and a micro-alignable sensing fiber is arranged between the lens elements. The sensing fiber is precisely aligned with respective lens elements within submicron tolerances using internally-housed micro-aligners. As a result, the fiber optic connector of the present invention can provide efficient coupling between optical fibers, such as optical fibers in two spliced composite parts.
Lehigh Tech ID# 123098-04
MARKET
Electronics and Optical market applications.
OPPORTUNITY
Please contact Lehigh University for more detals concerning this technology.